
International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019 630
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Data modeling in today’s Scenario
Dr Sunita Dwivedi1, Leeladhar Chourasiya2

1Associate Professor, MCRPV Bhopal, 2 Research Scholars, MCRPV Bhopal

Abstract
Data modeling is a decisive skill for every data scientist, whether you are doing research design or architecting a new
data base for any organization. The skill to think clearly and systematically about the key data points to be stored,
retrieved, and also how they should be grouped and related, is what the data modeling element of data science is all
about.

A data model describes information in a organized way that allows it to be stored and retrieved efficiently in a Relational
Database Management System (RDBMS), such as SQL Server, MySQL, or Oracle. The model can be thought of as a way
of translating the logic of precisely relating things in the real-world and the relationships between them into rules that can
be followed and enforced by computer code.

Data Models and Data Modeling Methodologies have been around since the beginning of time. Well, since the beginning
of computing anyway. Data needs structure in order to make sense of it and provide a way for computers to deal with its
bits and bytes. Sure, today we deal with unstructured and semi-structured data too, but for me it simply means that we
evolved to more sophisticated paradigms than our computing predecessors had to deal with. The Data Model therefore
remains, and provides the basis upon which we build highly advanced business applications.

Introduction

When we come across the words like modeling and
design in the context of data we think of logical design
and physical implementation of database. Sometimes
data modeling means documenting the software and
business system design. Diagrams, symbols, and
textual references are used to represent the way that
the data flows through within an enterprise or in
software application. Data modeling also involved in
decision making flows of entire organizations and
conceptual business process.
Data modeling is often used to design data structures at
various levels of abstraction from conceptual to
physical. As a result, data modeling will also lead to
effective design. The logical structure and the style in
which the data is organized, accessed or manipulated is
easy determines by model. Now a day’s organization
are interested to collect large data related to their
business, store these data in the repository and apply
some analytics on this for decision making.
An underlying DBMS may allow modeling the data in
different ways. This modeling is totally depends on the
structure of the application data and requirements of the
application. Most of the DBMS are built around the
particular data model even it is possible to extract more
from it.
A good data model will allow repository to grow easily,
as well as allowing for good performance. User
requirements are main factor for development of logical
data model, and then it is translated into the physical
data model. Ingredient of the data modeling exercise is
often the identification of data sources. Sometimes this
step is delayed until the ETL step. However, it is better
to find out where the data exists, or, better yet, whether
they even exist anywhere in the enterprise at all. If this
activity is somehow delayed until the ETL phase,
rectifying it will become a much tougher and more
complex process. In this paper we try to highlight the
data modeling techniques from its inception to recent
Big Data families.

History of Data Models

In the ‘Computing Dark Ages’, we used flat record
layouts, or arrays; all data saved to tape or large disk
drives for subsequent retrieval. However, in 1958, J. W.
Young and H. K. Kent described modeling information
systems as “a precise and abstract way of specifying
the informational and time characteristics of a data
processing problem”. Soon after in 1959, CODASYL or
the ‘Conference/Committee on Data Systems
Languages’, a consortium, was formed by the Charles
Babbage Institute at the University of Minnesota which
led to standard programming languages like COBOL
and the ‘Integrated Data Store’ (IDS); an early database
technology designed in the 1960’s at GE/Honeywell
by Charles Bachman. IDS proved difficult to use, so it
evolved to become the ‘Integrated Database
Management System’ (IDMS) developed at B. F.
Goodrich (a US aerospace company at the time, and
yes the tire company we know today), marketed by
Cullinane Database Systems (now owned by Computer
Associates). These two data modeling methodologies
called the ‘Hierarchal Data Model’ and the ‘Network
Data Model’ respectively, were both very common
across mainframe computing for the next 50 years. You
may still find them in use today. Wow!
In the late 1960’s, while working at IBM, E. F. Codd in
collaboration with C. J. Date (author of ‘An Introduction
to Database Systems’), mapped Codd’s innovative data
modeling theories resulting in the ‘Relational Model of
Data for Large Shared Data Banks’ publication in 1970.
Codd’s campaign to ensure vendors implemented the
methodology properly published his famous ’Twelve
Rules of the Relational Model’ in 1985. Actually,
thirteen rules numbered zero to twelve; Codd was
clearly a computer geek of his day.
The Relational Model also introduced the concept of
‘Normalization’ with the definition of the ‘Five Normal
Forms’. Many of us talk about ‘3NF’ or the ‘3rd Normal
Form’, but do you know how to define it? Read up on
these two links and find out if you really know what you
think you know. There will be a quiz at the end! Not …
The next significant data modeling methodology arrived
in 1996, proposed by Ralph Kimball (retired), in his
groundbreaking book co-authored by Margy Ross, ‘The
Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling’. Kimball’s widely adopted ‘Star
Schema’

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Data_model#cite_ref-10
https://en.wikipedia.org/wiki/Data_model#cite_ref-10
http://purl.umn.edu/40644
https://en.wikipedia.org/wiki/Charles_Babbage_Institute
https://en.wikipedia.org/wiki/Charles_Babbage_Institute
https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/Charles_Bachman
https://en.wikipedia.org/wiki/IDMS
https://en.wikipedia.org/wiki/IDMS
https://en.wikipedia.org/wiki/Goodrich_Corporation
https://en.wikipedia.org/wiki/Goodrich_Corporation
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Christopher_J._Date
https://www.amazon.com/Introduction-Database-Systems-8th/dp/0321197844
https://www.amazon.com/Introduction-Database-Systems-8th/dp/0321197844
http://www.idc-online.com/technical_references/pdfs/information_technology/A_Relational_Model_of_Data_for_Large_Shared_Data_Banks.pdf
http://www.idc-online.com/technical_references/pdfs/information_technology/A_Relational_Model_of_Data_for_Large_Shared_Data_Banks.pdf
http://computing.derby.ac.uk/c/codds-twelve-rules/
http://computing.derby.ac.uk/c/codds-twelve-rules/
http://www.bkent.net/Doc/simple5.htm
http://www.bkent.net/Doc/simple5.htm
https://en.wikipedia.org/wiki/Ralph_Kimball
http://www.kimballgroup.com/data-warehouse-business-intelligence-resources/books/data-warehouse-dw-toolkit/
http://www.kimballgroup.com/data-warehouse-business-intelligence-resources/books/data-warehouse-dw-toolkit/
http://www.kimballgroup.com/data-warehouse-business-intelligence-resources/books/data-warehouse-dw-toolkit/
https://en.wikipedia.org/wiki/Star_schema
https://en.wikipedia.org/wiki/Star_schema

International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019 631
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Data model applied concepts introduced in the data
warehouse paradigm first proposed in the 1970‘s by W.
H. (Bill) Inmon (named in 2007 by Computerworld as
one of the ten Most influential people of the first 40
years in computing). Inmon’s ‘Building the Data
Warehouse’, published in 1991 has become the defacto
standard for all data warehouse computing. While there
has been some history of disagreement between Inmon
and Kimball over the proper approach to data
warehouse implementation, Margy Ross, of the Kimball
Group in her article ‘Differences of Opinion’ presents a
fair and balanced explanation for your worthy
consideration.
Recently a new data modeling methodology has
emerged as a strong contender. The Data Vault! Its
author and inventor, Dan Linsdedt, first conceived the
Data Vault in 1990 and released a publication to the
public domain in 2001. The Data Vault model resolves
many competing Inmon & Kimball arguments,
incorporating historical lineage of data, and offering a
highly adaptable, auditable, and expandable paradigm.
 A critical improvement (IMHO); I invite you to read my
blog on ‘What is "The Data Vault" and why do we need
it?’. Linstedt’s Data Vault proved invaluable on several
significant DOD, NSA, and Corporate projects. In 2013,
Linsdedt released Data Vault 2.0 addressing Big Data,
NoSQL, unstructured, semi-structured data integration
coupled with SDLC best practices on how to use it.
Perfect timing, I’d say. So here we are …
2.1 Data Modeling Process
Data modeling process starts with analyzing the
situation. Here the analysts are able to gather
requirements, when designing a proper data model it’s
important to communicate with the stakeholders about
the requirements. Data modeling is the act of exploring
data oriented structures, which can be used for multiple
purposes. Mainly data modeling is a communication tool
among users, which considers as the blue print of the
database system. (Merson, Paulo F.).
A data model consists of three different phases.
(West)Those are:
Structural part – Consisting a set of rules
Manipulating part – Types of operations allowed, such
as updating, retrieving, and changing the
database Integrity part – which validates the accuracy
of data.
2.2 Data Analysis
The techniques of data analysis can impact the type of
data model selected and its content. For example, if the
intent is simply to provide query and reporting
capability, a data model that structures the data in more
of a normalized fashion would probably provide the
fastest and easiest access to the data. Query and
reporting capability primarily consists of selecting
associated data elements, perhaps summarizing them
and grouping them by some category, and presenting
the results. Executing this type of capability typically
might lead to the use of more direct table scans. For
this type of capability, perhaps an ER model with a
normalized and/or demoralized data structure would be
most appropriate.

Reason to Data Model
We’ll look at how data models are easier to change than
databases, why data models are easier to review than
database designs, and consider how data modeling
principles will help you succeed in a wider range of
software projects.
– Data Models are Easier to Change than Databases
– Data Models Are Easier to Review than Database
Designs
 – Data Models Will Help You Succeed On More
Projects
Stages of Data Modeling

There is a horde of related terminology including
application data models, conceptual modeling,
enterprise modeling, logical models, physical models,
entity-relationship models, object models, multi-
dimensional models, knowledge graphs, statistical
models, canonical data models, business requirements
models, enterprise data models, integration models,
business information models, taxonomies, non-
relational models, semantic modeling, and many others.
A model is not just a manner of structuring data but also
defines a set of operations that can be performed on the
data. For example the relational model defines
operations such as select and join. These operations
may not be explicit in a particular query language they
provide the foundation on which a query language is
built.
One can implement various physical data models from
given logical model. While doing physical
implementation most of the DBMS allow some degree of
control on this, which then improve the performance.
Conceptual – This is the first step in the modeling
process, which imposes a theoretical order on data as it
exists in relationship to the entities being described,
often real-world artifacts or concepts. These models are
also called domain models and are typically used to
explore domain concepts with project stakeholders. On
traditional teams conceptual data models are often
created as the precursor to Logical Data Models or as
alternatives to Logical Data Models.

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Bill_Inmon
https://en.wikipedia.org/wiki/Bill_Inmon
http://fit.hcmute.edu.vn/Resources/Docs/SubDomain/fit/ThayTuan/DataWH/Bulding%20the%20Data%20Warehouse%204%20Edition.pdf
http://fit.hcmute.edu.vn/Resources/Docs/SubDomain/fit/ThayTuan/DataWH/Bulding%20the%20Data%20Warehouse%204%20Edition.pdf
http://www.kimballgroup.com/2004/03/differences-of-opinion/
https://en.wikipedia.org/wiki/Data_vault_modeling
http://danlinstedt.com/
https://www.talend.com/blog/2015/03/27/what-is-the-data-vault-and-why-do-we-need-it/
https://www.talend.com/blog/2015/03/27/what-is-the-data-vault-and-why-do-we-need-it/
http://learndatavault.com/
https://en.wikipedia.org/wiki/Select_(SQL)
https://en.wikipedia.org/wiki/Join_(SQL)
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Physical_data_model

International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019 632
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Logical – Taking the semantic structure built at the
conceptual stage, the logical modeling process attempts
to impose order by establishing discrete entities, key
values, and relationships in a logical structure that is
brought into at least 4th normal form (4NF). This could
be done for the scope of a single project or for your
entire enterprise.

Physical – Actually not physical at all, but it would be
confusing to use “logical” twice, this step breaks the
data down into the actual tables, clusters, and indexes
required for the data store. Physical data models are
used to design the internal schema of a database,
depicting the data tables, the data columns of those
tables, and the relationships between the tables.

Altho

ugh logical data model and physical data model sound
very similar, and they in fact are, the level of detail that
they model can be significantly different. This is

because the goals for each diagram are different – you
can use a logical data model to explore domain
concepts with your stakeholders and the physical data
model to define your database design. Figure
1 presents a simple logical data model and Figure 2 a
simple physical data model, both modeling the concept
of customers and addresses as well as the relationship
between them. Both diagrams apply the Barker
notation, summarized below. Notice how the physical
data model shows greater detail, including an
associative table required to implement the association
as well as the keys needed to maintain the
relationships. More on these concepts later. Physical
data model should also reflect your organization’s
database naming standards; in this case an
abbreviation of the entity name is appended to each
column name and an abbreviation for “Number" was
consistently introduced. Physical data model should
also indicate the data types for the columns, such as
integer and char(5). Although Figure 2 does not show
them, lookup tables (also called reference tables or
description tables) for how the address is used as well
as for states and countries are implied by the attributes.
Figure 1. A simple logical data model.

Figure 2. A simple physical data model.

The following is the comparison of these three
models based on different features:
Feature Conceptual Logical Physical
Entity Names ✓ ✓
Entity
Relationships ✓ ✓

Attributes ✓
Primary Keys ✓ ✓
Foreign Keys ✓ ✓
Table Names ✓
Column Names ✓

IJSER

http://www.ijser.org/
http://agiledata.org/essays/dataModeling101.html#Figure1SimpleLDM
http://agiledata.org/essays/dataModeling101.html#Figure1SimpleLDM
http://agiledata.org/essays/dataModeling101.html#Figure2SimplePDM
http://www.amazon.com/exec/obidos/ASIN/0201416964/ambysoftinc
http://www.amazon.com/exec/obidos/ASIN/0201416964/ambysoftinc
http://agiledata.org/essays/dataModeling101.html#Notations
http://agiledata.org/essays/dataModeling101.html#Figure2SimplePDM
http://dataintelligence.jzakaras.com/?p=46

International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019 633
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Column Data
Types ✓

The complexity increases from conceptual model to
logical model to physical model hence we always first
start with the conceptual data model to understand at
high level what are the different entities in our data and
how they relate to one another then move on to the
logical data model to understand the details of our data
without worrying about how they will actually
implemented and finally the physical data model to
know exactly how to implement our data model in the
database of choice.
There are many possible visual representations of data
models, but the primary one used in database design
today is the classic entity-relationship model. This is
simply a flowchart of boxes, describing entities with
their attendant data points inside, and lines between the
boxes, describing the relationships between entities.
Modelers might find themselves using other specialized
modeling methodologies on specific projects, however,
and data scientists will be expected to learn several of
them, including:
Bachman Diagrams
Object-Role modeling
Zachman Frameworks

Data Modeling for Non RDBMS
Massive datasets have pulled back the dominance of
RDBMS’s, whether the data being stored can easily be
modeled relationally or not. The RDBMS store
archetype depends on the database system itself to
maintain coherence and internal consistency of the data
being held in it, and while the relational model, when
properly applied, can achieve this, the process comes
with overhead. When huge data points are being stored,
the price of this internal consistency can bring
performance grinding to a halt.
NoSQL databases such as MongoDB, HBase and
Cassandra and have been one of the most promising
industry answers to this problem. These use sometimes
fundamentally de-normalized data stores with the sole
objective to improve performance. They rely on queries
and calling code to handle the sort of integrity,
consistency and concurrency that come baked-in to the
RDBMS approach, offering blinding speed and
scalability over ease-of-use.
To do this, they adopt simplistic data stores such as:

• Key-value stores
• Document stores
• Graphs

Modeling these types of stores is a significant departure
from the RDBMS method. Data scientists may start from
the result side of the process, asking themselves, “What
question am I trying to answer?” instead of “What data
do I need to store?” They’ll completely disregard
duplication of data and have to plan to handle
concurrency conflicts and other integrity issues on the
output end rather than in the design itself. They might
choose to aggregate data rather than breaking it down
discretely, shoving complete sales transactions into a
flat document store, for instance.
NoSQL data modeling puts your education to the test as
you put to use advanced techniques such as:

• Atomic updates
• Dimensionality reduction
• Inverted search patterns
• Tree aggregation

Understanding these techniques and the capabilities
offered by NoSQL, allow data scientists to make the
best choices for what type of data store to use and how
to model it. In almost every case, data scientists in the
real world will end up using a combination of RDBMSs
and NoSQL or other exotic data sources as a daily part
of their work. Understanding how to apply the models
that allow those systems to record a picture of the world
is the only thing that makes the job even distantly
possible.
Database Model Types
The main work of data modeling is to categorize data or
any kind of information that is required by the system so
it can store it, maintain it or let others access it when
needed. There are several types of data models
available in database. Most common models are:

• Relational
• Hierarchical
• Entity-relationship
• Network
• Object-oriented database
• Document
• Entity-attribute-value
• Star schema
• The object-relational, which combines the two

that make up its name
Relational model
The data is organized in two-dimensional tables and the
relationship is maintained by storing a common field in
relational model. In 1970 E.F Codd has introduced this
model and is most widely used model today also. Table
is basic structure of the data in this model. The
information related to a particular type is stored in rows
of that table. Thus, tables are also known as relations in
relational model.

Hierarchical Model
In this model, a child node will only have a single parent
node and data is organizes into a tree-like-structure,
with a single root, to which all the other data is linked.
The hierarchy starts from the Root data, and expands
like a tree, adding child nodes to the parent nodes.
In hierarchical model, data is organized into tree-like
structure with one one-to-many relationship between
two different types of data, for example, one department
can have many courses, many professors and of-course
many students.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019 634
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Entity-relationship
In entity-relationship model, relationships are created by
dividing object of interest into entity and its
characteristics into attributes. Different entities are
related using relationships. ER Models are defined to
represent the relationships into pictorial form to make it
easier for different stakeholders to understand. This
model is good to design a database, which can then be
turned into tables in relational model.
Network model
The network model builds on the hierarchical model by
allowing many-to-many relationships between linked
records, implying multiple parent records. Based on
mathematical set theory, the model is constructed with
sets of related records. Each set consists of one owner
or parent record and one or more member or child
records. A record can be a member or child in multiple
sets, allowing this model to convey complex
relationships.
It was most popular in the 70s after it was formally
defined by the Conference on Data Systems Languages
(CODASYL).

Object-oriented database model
This model defines a database as a collection of
objects, or reusable software elements, with associated
features and methods. There are several kinds of
object-oriented databases:
A multimedia database incorporates media, such as
images, that could not be stored in a relational
database.
A hypertext database allows any object to link to any
other object. It’s useful for organizing lots of disparate
data, but it’s not ideal for numerical analysis.
The object-oriented database model is the best known
post-relational database model, since it incorporates
tables, but isn’t limited to tables. Such models are also
known as hybrid database models.
Object-relational model
This hybrid database model combines the simplicity of
the relational model with some of the advanced
functionality of the object-oriented database model. In
essence, it allows designers to incorporate objects into
the familiar table structure.
Languages and call interfaces include SQL3, vendor
languages, ODBC, JDBC, and proprietary call interfaces
that are extensions of the languages and interfaces
used by the relational model

Other database models
A variety of other database models has been or are still
used today.
Inverted file model

A database built with the inverted file structure is
designed to facilitate fast full text searches. In this
model, data content is indexed as a series of keys in a
lookup table, with the values pointing to the location of
the associated files. This structure can provide nearly
instantaneous reporting in big data and analytics, for
instance.
This model has been used by the ADABAS database
management system of Software AG since 1970, and it
is still supported today.
Flat model
The flat model is the earliest, simplest data model. It
simply lists all the data in a single table, consisting of
columns and rows. In order to access or manipulate the
data, the computer has to read the entire flat file into
memory, which makes this model inefficient for all but
the smallest data sets.
Multidimensional model
This is a variation of the relational model designed to
facilitate improved analytical processing. While the
relational model is optimized for online transaction
processing (OLTP), this model is designed for online
analytical processing (OLAP).
Each cell in a dimensional database contains data
about the dimensions tracked by the database. Visually,
it’s like a collection of cubes, rather than two-
dimensional tables.
Semi structured model
In this model, the structural data usually contained in
the database schema is embedded with the data itself.
Here the distinction between data and schema is vague
at best. This model is useful for describing systems,
such as certain Web-based data sources, which we
treat as databases but cannot constrain with a schema.
It’s also useful for describing interactions between
databases that don’t adhere to the same schema.
Context model
This model can incorporate elements from other
database models as needed. It cobbles together
elements from object-oriented, semi structured, and
network models.
Associative model
This model divides all the data points based on whether
they describe an entity or an association. In this model,
an entity is anything that exists independently, whereas
an association is something that only exists in relation
to something else.
The associative model structures the data into two sets:

• A set of items, each with a unique identifier, a
name, and a type

• A set of links, each with a unique identifier and
the unique identifiers of a source, verb, and
target. The stored fact has to do with the
source, and each of the three identifiers may
refer either to a link or an item.

Other, less common database models include:
• Semantic model, which includes information

about how the stored data relates to the real
world

• XML database, which allows data to be
specified and even stored in XML format

• Named graph
• Triple store

NoSQL database models
In addition to the object database model, other non-SQL
models have emerged in contrast to the relational
model:
The graph database model, which is even more flexible
than a network model, allowing any node to connect

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019 635
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

with any other. The multivalve model, which breaks from
the relational model by allowing attributes to contain a
list of data rather than a single data point.
The document model, which is designed for storing and
managing documents or semi-structured data, rather
than atomic data.
Conclusion
A Data Model is a common and essential ingredient of
Business Applications, Data Integration, Master Data
Management, Data Warehousing, Big Data, Data Lakes,
and Machine Learning. The Data Model is the backbone
of almost all of our high value, mission critical, business
solutions from e-Commerce and Point-of-Sale, through
Financial, Product, and Customer Management, to
Business Intelligence and IoT. The paper presented
above gives an understanding of Data modeling
techniques; along with it the paper gives a review of the
research and developments in the field of Data and
Modeling techniques. The paper also provides the
suggestion regarding the future researches in the field
of Data and Modeling.

Reference

1. Xiaoyue Han, Lianhua Tian, Minjoo Yoon, Minsoo
Lee, "A Big Data Model supporting Information
Recommendation in Social
Networks", 2012 Second International Conference on
Cloud and Green Computing. IEEE.
2. Imran Khan, S. K. Naqvi, Mansaf Alam, S. N. A Rizvi,
"Data Model for Big Data in Cloud Environment", 2015
2nd
International Conference on Computing for Sustainable
Global Development (INDIACom). IEEE.
3. Abdullah, M. F., & Ahmad, K. (2013, November). The
mapping process of unstructured data to structured
data. In Research
and Innovation in Information Systems (ICRIIS), 2013
International Conference on (pp. 151-155). IEEE.
4. Li Kang, Li Yi, LIU Dong, "Research on Construction
Methods of Big Data Semantic Model", Proceedings of
the World
Congress on Engineering 2014 Vol- I, WCE 2014, July 2
- 4, 2014, London, U.K. IEEE.
5. Gruber TR, "A translation approach to portable
ontology specifications[J]" Knowledge acquisition, 1993,
5(2): 199-220.
6. Hemant Kumud, "Handling Unstructured Data for
Semantic Web – A Natural Language Processing
Approach", Scholars
7.Journal of Engineering and Technology (SJET) ISSN
2321-435X (Online) Sch. J. Eng. Tech., 2014; 2(2A):193-
196

IJSER

http://www.ijser.org/

